6 1 Color Constancy
DAVID H. BRAINARD

COLOR 1S USED TO RECOGNIZE and describe objects. When
giving directions, we might provide the detail that the desti-
nation 1s a yellow house. When judging the ripeness of a fruit,
we might evaluate its color. The ability to perceive objects as

having a well-defined color 1s quite remarkable. To under-
stand why; it 1s necessary to consider how information about
object spectral properties 1s represented n the retinal image.

A scene 1s a set of 1lluminated objects. In general, the 1illu-
mination has a complex spatial distribution, so that the
illuminant falling on one object in the scene may differ from
that falling on another. Nonetheless, a usetul point of depar-
ture 1s to consider the case where the illumination is uniform
across the scene, so that it may be characterized by 1its spec-
tral power distribution, F{A). This function specifies how much
power the illuminant contains at each wavelength. 'T'he 1illu-
minant reflects off objects to the eye, where it 1s collected
and focused to form the retinal umage. It 1s the image that is
explicitly available for determining the composition ot the
scene.

Object surfaces differ in how they absorb and reflect
light. In general, reflection depends on wavelength, the
angle of the incident light (relative to the surface normal),
and the angle of the reflected light (Foley et al., 1990). It 1s
again useful to simplify and neglect geometric considera-
tions, so that each object surface 1s characterized by a
spectral reflectance function, S(A). This function specifies what
fraction of incident illumination is reflected from the object
at each wavelength.

The light reflected to the eye from each visible scene loca-
tion 1s called the color signal. For the simplified imaging model
described above, the spectral power distribution of the color
signal C(A) is readily calculated from the illuminant spectral
power distribution and the surface reflectance function:

CO) = EO)SQ) (1)

T'he retinal 1image consists of the color signal mcident at
each location after blurring by the eye’s optics. In the treat-
ment here, such blurring may be safely ignored.

The imaging model expressed by equation 1 assumes that
the light source 1s spatially uniform, that the objects are flat
and coplanar, and that the surface reflectances are Lam-
bertian. It 1s sometimes referred to as the Mondrian World
imaging model. The assumptions of the Mondrian World
never hold for real scenes. A more realistic formulation
would include a description of the spatial distribution of the
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illuminant, the geometry of the scene, and how each object’s
spectral reflectance depends on the direction of the incident
and reflected light (Foley et al., 1990; also see Fig. 61.2).
Nonetheless, the Mondrian World 1s rich enough to provide
a useful framework for initial analysis.

The form of equation 1 makes explicit the fact that two
distinct physical factors, the illuminant and the surface
reflectance, contribute 1n a symmetric way to the color
signal. One of these factors, the surface reflectance, 1s intrin-
sic to the object and carries information about its identity
and properties. The other factor, the illuminant, is extrinsic
to the object and provides no information about the object.

Given that the color signal at an image location confounds
illuminant and surface properties, how i1s it possible to per-
ceive objects as having a well-defined color? Indeed, the
form of equation 1 suggests that changes in illuminant
can masquerade perfectly as changes in object surface
reflectance, so that across conditions where the illuminant
varies, one might expect large changes in the appearance of
a fixed object. This physical process 1s illustrated by Figure
61.1. Each of the two patches shown at the top of the figure
corresponds to a region of a single object imaged under a
different outdoor illuminant. When the two patches are
seen 1n 1solation, their color appearance 1s quite different:
there 1s enough variation in natural daylight that the color
signal 1s substantially ambiguous about object surface
properties.

When the two patches are seen in the context of the
images from which they were taken, the variation in color
appearance 18 reduced. This stabilization of appearance is
by no means complete in the figure, where the reader views
small printed images that are themselves part of a larger 1llu-
minated environment. For an observer standing in front of
the home shown, however, the variation in perceived color
1s minimal and not normally noticed. This suggests that the
visual system attempts to resolve the ambiguity inherent in
the color signal by analyzing many image regions jointly: the
full iImage context i1s used to produce a stable perceptual
representation of object surface color. This ability 1s referred
to as color constancy.

T'his chapter 1s about human color constancy. The litera-
ture on color constancy 1s vast, extending back at least to the
eighteenth century (Mollon, in press), and this chapter does
not attempt a systematic review. Rather, the goal is to provide
an overview of how human color constancy can be studied
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Ficure 61.1.  Same objects imaged under two natural illuminants.
Top: The patches show a rectangular region extracted from images
of the same object under different outdoor illuminants. Bottom: 'T'he

images from which the patches were taken. Images were acquired

experimentally and how 1t can be understood. The next
section presents an extended example of how constancy 1s
measured in the laboratory. 'The measurements show both
circumstances where constancy 1s good and those where 1t 1s
not; a characterization ol human color vision as either
“approximately color constant” or “not very color constant”
1s too simple. Rather, we must characterize when constancy
will be good and when 1t will not. 'The discussion outlines
two current approaches.

Measuring constancy

"T'his section illustrates how constancy may be measured by
describing experiments conducted by Kraft and Brainard
(1999; see also Bramnard, 1998; Kraft et al., 2002). Belore
treating the specific experimental design, however, some
general remarks are in order.

Several distinct physical processes can cause the 1llumina-
tion 1mpinging on a surface to vary. T'he images m Iigure
61.1 illustrate one such process. They were taken at differ-
ent times, and the spectra of the illuminant sources changed.
Color constancy across illumination changes that occur over
time 1s called successive color constancy.

(Geometric factors can also cause the illumination imping-
ing on a surface to change. 'T'his 1s tllustrated by Figure 61.2.
All of the effects shown occur without any change in the
spectra of the light sources but mstead are induced by the
ccometry of the light sources and objects. Color constancy
across 1llumination changes that occur within a single scene
1s called sunultaneous color constancy.

by the author in Merion Station, Pennsylvania, using a Nikon
CoolPix 995 digital camera. The automatic white balancing
calculation that 1s a normal part of the camera’s operation was
disabled during image acquisition. (See color plate 36.)

T'he visual system’s ability to achieve simultaneous con-
stancy need not be easily related to its ability to achieve
successive constancy. Indeed, fundamental to simultaneous
constancy 1s some sort of segmentation of the image mto
regions of common illumination, while such segmentation 1s
not obviously necessary for successive constancy (Adelson,
1999). Often results and experiments about successive and
simultaneous constancy are compared and contrasted
without explicit acknowledgment that the two may be quite
different; keeping the distinction in mind as one considers
constancy can reduce confusion. This chapter will focus on
successive constancy, as many of the key conceptual 1ssues
can be introduced without the extra richness of simultane-
ous constancy. The discussion returns briefly to simultane-
ous constancy.

At the beginning of the chapter, constancy was cast
in terms of the stability of object color appearance, and
this 1s the sense in which the experiments presented below
Some authors (Brainard and Wandell, 1988;
D’Zmura and Mangalick, 1994; Foster and Nascimento,
1994; Khang and Zaidi, 2002) have suggested that con-
stancy might be studied through performance (e.g., object

assess  It.

identification) rather than through appearance per se.
One might expect appearance to play an 1mportant

identification, but reasoning might also be

Although  the

performance-based methods 1s an interesting direction, this

role 1n

ivolved. study of constancy using
chapter 1s restricted to measurements and theories of

dAppccarancec.
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Ficure 61.2. Image formation. Each set of square patches
around the side of the mmage illustrates variation in the light
reflected to the eye when surface reflectance 1s held fixed. Gradient:
The two patches shown were extracted from the upper left (L) and
lower right (R; above table) of the back wall of the scene. Shadow:
The two patches were extracted from the tabletop in direct illumi-
nation (D) and shadow (S). Shape: The three patches shown were
extracted from two regions of the sphere (T and B; center top and
right bottom, respectively) and from the colored panel directly
above the sphere (P; the panel is the leftmost of the four in the
bottom row). Both the sphere and the panel have the same simu-
lated surface reflectance function. Pose and indirect illum: The four
patches were extracted from the three visible sides of the cube (R,
L, and T; right, left, and top wvisible sides, respectively) and from
the left side of the folded paper located between the cube and
the sphere (I). The simulated surface reflectances of all sides
of the cube and of the left side of the folded paper are identical.
The mimage was rendered from a synthetic scene description using
the RADIANCE computer graphics package (Larson and Shake-
speare, 1998). 'T'here were two sources of illumination in the sim-
ulated scene: a diffuse illumination that would appear bluish if
viewed in 1solation and a directional illumination (from the upper
left) that would appear yellowish 1if viewed in 1solation. All of the
effects illustrated by this rendering are easily observed in natural
scenes. (Sce color plate 37.)

AN ExampLE EXPERIMENT Figure 61.3 shows the basic
experimental setup used by Kraft and Braimard (1999).
Subjects viewed a collection of objects contained in an
experimental chamber. The chamber illumination was pro-
vided by theater lamps. The light from the lamps passed
through a diffuser before entering the chamber, so that the
overall effect was of a single diffuse illuminant. Each lamp
had either a red, green, or blue filter, and by varying the
intensities of the individual lamps, the spectrum of the
chamber illumination could be varied. Because the light in
the chamber was diftfuse, the viewing environment provided
a rough approximation to Mondrian World conditions.
The far wall of the experimental chamber contained a fest
patch. Physically, this was a surface of low neutral reflectance
so that under typical viewing conditions 1t would have
appeared dark gray. The test patch was illuminated by the
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Test patch

Projection
colorimeter

FiGUure 61.3.  Schematic diagram of the experimental apparatus
used in the experiments of Kraft and Brainard. An experimental
chamber was 1lluminated by computer-controlled theater lamps.
Different filters were placed over individual lamps, so that by
varying their relative intensity the overall spectral power distribu-
tion of the chamber illumination could be varied. The light from
the lamps was passed through a diffuser, producing a fairly homo-
gencous 1llumination. The observer viewed a test patch on the far
wall of the chamber. The test patch was illuminated by the ambient
chamber illumination and also by a beam from a projection col-
orimeter. The beam from the colorimeter was not explicitly visible,
so that the perceptual effect of varying it was to change the appar-
ent surface color of the test patch.

ambient chamber illumimnation and also by a separate
projector. The projector beam was precisely aligned with the
edges of the test patch and consisted of a mixture of red,

green, and blue primaries. By varying the amount of each
primary in the mixture, the hight reflected to the observer
from the test patch could be varied independently of the rest
of the image. The effect of changing the projected light was
to change the color appearance of the test, as if it had been
repainted. The apparatus thus functioned to control the
effect described by Gelb (1950; see also Katz, 1935; Kofika,
1935), wherein using a hidden light source to illuminate a
paper dramatically changes its color appearance.

The observer’s task in Kraft and Brainard’s (1999) exper-
iments was to adjust the test patch until it appeared achro-
matic. Achromatic judgments have been used extensively
in the study of color appearance (e.g., Chichilnisky and
Wandell, 1996; Helson and Michels, 1948; Werner and Wal-
raven, 1982). During the adjustment, the observer controlled




the chromaticity of the test patch while its luminance was
held constant. In essence, the observer chose the test patch
chromaticity, which appeared gray when seen in the context
set by the rest of the experimental chamber. Whether the
test patch appeared light gray or dark gray depended on its
luminance. This was held constant during individual adjust-
ments but varied between adjustments. For conditions where
the luminance ot the test patch 1s low relative to its sur-
roundings, Brainard (1998) found no dependence of the
chromaticity of the achromatic adjustment on test patch
luminance. This independence does not hold when more
luminous test patches are used (Chichilmisky and Wandell,
1996; Werner and Walraven, 1982).

The data from the experiment are convenmently repre-
sented using the standard 1931 CIE chromaticity diagram.
lechnical explanations of this diagram and its basis 1n visual
performance are widely available (e.g., Brainard, 1995; CIE,
1986; Kaiser and Boynton, 1996), but its key aspects are
easily summarized. Human wvision 1s trichromatic, so that
a light C{A) may be matched by a mixture of three fixed
primaries:

CA) ~ XA (M) +YE (M) + ZP (M) (2)
In this equation P;(A), P5(A), and P3(A) are the spectra of the

three primary lights being mixed, and the scalars X, 7,
and < specity the amount of each primary in the mixture.
The symbol ~ indicates visual equivalence. When we are
concerned with human vision, standardizing a choice of
primary spectra allows us to specify a spectrum compactly
by its tristimulus coordinates X, V, and £. The CIE chromatic-
ity diagram 1s based on a set of known primaries together
with a standard of pertormance that allows computation of
the tristimulus coordinates of any light from its spectrum.
The chromaticity diagram, however, represents lights with
only two coordinates, x and y. These chromaticity coordinates are
simply normalized versions of the trisiimulus coordinates:

X ¥

A=, J=Eo (3)
X+V+2 X+V+2

The normalization removes from the representation all
information about the overall intensity of the spectrum while
preserving the information about the relative spectrum that
is relevant for human vision.

Figure 61.4 shows data trom two experimental conditions.
Each condition is defined by the scene within which the
test patch was adjusted. The two scenes, labeled Scene 1 and
Scene 2, are shown at the top of the figure. The scenes were
sparse but had wvisible three-dimensional structure. The
surface lining the chamber was the same 1n the two scenes,
but the spectrum of the illuminant differed. The data plotted
for each condition are the chromaticity of the illuminant
(open cireles) and the chromaticity ot the observers’ achro-
matic adjustments (closed ctrcles).

The points plotted for the illuminant are the chromatic-
ity of the illuminant, as measured at the test patch location
when the projection colorimeter was turned off. These
represent the chromaticity of the ambient illumination in the
chamber, which was approximately uniform. The fact that
the illuminant was changed across the two scenes 1s revealed
in the figure by the shift between the open circles.

The plotted achromatic points are the chromaticity of
the light reflected to the observer when the test appeared
achromatic. This light was physically constructed as the
superposition of reflected ambient hight and reflected light
from the projection colorimeter. Across the two scenes, the
chromaticity of the achromatic point shifts in a manner
commensurate with the shift in illuminant

roughly

chromaticity.

REeraTioN oF THE Dara To Constancy  What do the data
plotted in Figure 61.4 say about color constancy across the
change from Scene 1 to Scene 2? A natural but misleading
intuition 1s that the large shift in the achromatic locus shown
n the figure reveals a large failure ot constancy. This would
be true if the data plotted represented directly the physical
properties of the surface that appears achromatic. As noted
above, however, the data plotted describe the spectrum of
the light reaching the observer. To relate the data to con-
stancy, 1t 1s necessary to combine information from the mea-
sured achromatic points and the illuminant chromaticities.

Suppose that the observer perceives the test patch as a
surface illuminated with the same ambient illumination as
the rest of the chamber. Introspection and some experi-
mental evidence support this assumption (Brainard et al.,
1997). The data {rom Scene 1 can then be used to infer the
spectral reflectance ot an equivalent surface. 'The equivalent
surface would have appeared achromatic had it been placed
at the test patch location with the projection colorimeter
turned off.

Let the reflectance function of the equivalent surface be
S(A). This function must be such that the chromaticity of
E/(A\)S(A) is the same as the chromaticity of the measured
achromatic point, where E,(A) is the known spectrum of the
ambient lluminant in Scene 1. It 1s straightforward to find
functions g(?uj that satisty this constraint. The nset to Figure
61.4 shows one such function. The function Sh(?u) is referred
to as the equivalent surface reflectance corresponding to the mea-
sured achromatic point.

The equivalent surtace reflectance 5().) allows us to
predict the performance of a color constant observer for
other scenes. lo a constant observer, any given surface
should appear the same when embedded in any scene. More
specifically, a surtface that appears achromatic in one scene
should remain so in others. Given the data for Scene 1, the
chromaticity of the achromatic point for a test patch in

L

Scene 2 should be the chromaticity of E,(A)S(A), where Ey(A)
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Ficure 61.4. Basic data from an achromatic adjustment experi- I plots to the lower left of the illuminant for Scene 2. The closed

ment. The images at the top of the figure show the observer’s view
of two scenes, labeled 1 and 2. The test patch is visible in each
image. The projection colorimeter was turned off” at the ume the
images were acquired, so the mmages do not show the results of
observers” achromatic adjustments. The chromaticity diagram
shows the data from achromatic adjustments of the test patch made
in the context of the two scenes. The open circles show the chro-
maticity of the illuminant for each scene. The illuminant for Scene

1s the spectrum of the illuminant in Scene 2. This predic-
tion 1s shown 1n Figure 61.4 by the closed diamond.

Although the measured achromatic point for Scene 2 does
not agree precisely with the constancy prediction, the devi-
ation 1s small compared to the deviation that would be mea-
sured for an observer who had no constancy whatsoever. For
such an observer, the achromatic point would be nvariant
across changes of scene. Thus, the data shown in Figure 61.4
indicate that observers are approximately color constant
across the two scenes studied in the experiment.

Brainard (1998) developed a constancy index that quan-
tifies the degree of constancy revealed by data of the sort
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circles show the chromaticity of the mean achromatic adjustments
of four observers. Where visible, the error bars indicate *1 stan-
dard error. The surface reflectance function plotted in the inset at
the right of the figure shows the equivalent surface reflectance
S(A) computed from the data obtained in Scene 1. The closed
diamond shows the color constant prediction for the achromatic
adjustment 1n Scene 2, given the data obtained for Scene 1. See
the explanation in the text. (See color plate 38.)

presented in Figure 61.4. The index takes on a value of 0
for no adjustment and 1 for perfect constancy, with inter-
mediate values for intermediate performance. For the data
shown 1n Figure 61.4, the constancy index 1s 0.83. This high
value seems consistent with our everyday experience that the
colors of objects remain stable over changes of illumimant
but that the stability 1s not perfect.

A PArRaDOX aND ITs REsoruTioN The introductory section
stated that 1lluminant and surface information 1s perfectly
confounded 1n the retinal image. The data shown in

Figure 61.4 indicate that human wvision can separate
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Ficure 61.5.
color constancy. The figure shows schematically the set of all
scenes. Each pomt in the schematic represents a possible scenc.

Schemartic illustration of the ambiguity inherent n

Scenes | and 2 from the experiment described in text are indicated
by closed circles. Each shaded ellipse encloses a subset of scenes
that all produce the same 1mage. The scenes represented by open
circles, Scenes 1 and 2, produce the same 1mages as Scenes 1 and
2, respectively. The open ellipses each enclose a subset of scenes
that share the same illumimant.

these confounded physical factors and achieve approximate
color constancy. This presents a paradox. If the information
1s perfectly confounded, constancy 1s mmpossible. It con-
stancy 1s impossible, how can the visual system be achieving
1t?

The resolution to this paradox is found by considering
restrictions on the set of scenes over which constancy holds.
Figure 61.5 shows a schematic diagram of the set of all
scenes, represented by the thick outer boundary. Each point
within this boundary represents a possible scene, that is, a
particular choice of illuminant and surface reflectances. The
closed circles represent the two scenes used 1n the experi-
ment described above. These are labeled Scene | and Scene
2 mn the figure.

Denote the retinal image produced from Scene 1 as
Image 1. Many other scenes could have produced this
same 1mage. [his subset of scenes is indicated n the figure
by the shaded ellipse that encloses Scene 1. This ellipse 1s
labeled Image 1 in the figure. It also contains Scene 1, indi-
cated by an open circle in the figure. Scenes 1 and 1 produce
the same 1mage and cannot be distinguished by the visual
system.

Similarly, there 1s a separate subset of scenes that produce
the same image (denoted Image 2) as Scene 2. This subset
s also indicated by a shaded ellipse. A particular scene con-
sistent with Image 2 1s indicated by the open circle labeled
Scene 2. Like Scenes 1 and 1, Scenes 2 and 9 cannot be
distinguished from each other by the visual system.

The open ellipse enclosing each solid circle shows a dif-
ferent subset of scenes to which it belongs. 'T'hese are scenes
that share a common illuminant. 'T'he open ellipse enclosing
Scene | indicates all scenes illuminated by £,(A), while the
open ellipse enclosing Scene 2 indicates all scenes illumi-
nated by Fy(A).

The figure illustrates why constancy 1s 1mpossible 1n
general. When viewing Image 1, the visual system cannot
tell whether Scene 1 or Scene 1 is actually present: achro-
matic points measured for a test patch embedded m these
two scenes must be the same, even though the scene illumi-
nants are as different as they are for Scenes 1 and 2. Recall
from the data analysis above that this result (no change of
achromatic point across a change ot 1lluminant) indicates the
absence of constancy.

'The figure also illustrates why constancy can be shown
across some scene pairs. Scenes 1 and 2 produce distin-
cuishable retinal 1mages, so there is no a priori reason for
the measured achromatic points for test patches embedded
in these two scenes to bear any relation to each other. In
particular, there 1s no constraint that prevents the change n
achromatic points across the two scenes from tracking the
corresponding illummant change. Indeed, one mterpreta-
tion of the good constancy shown by the data reported

above 1s that the wvisual system infers approximately the
correct lluminants for Scenes 1 and 2. A mystery would
occur only if 1t could also infer the correct illuminants for
Scenes 1 and 2.

Figure 61.6 replots the results from achromatic measure-
ments made for Scene 1 together with the results for a new
scene, I. The illuminant in Scene 1 is the same as that in
Scene 2, but the objects 1in the scene have been changed to
make the image reflected to the eye for Scene I h ighly similar

to that reflected for Scene 1; Scene |

[

S an cxperimcntal
described above.

— g 2

approximation to the idealized Scene
It would be surprising indeed 1if constancy were good
when assessed between Scenes | and T, and 1t 1s not. The
achromatic points measured for Scenes 1 and I are very

similar; with the constancy index between them being 0.11.
Discussion

Constancy DEPENDS ON THE IMAGE ENSEMBLE STUDIED
'The analysis and data presented above show that the degree
of human color constancy depends on the choice of scenes
across which 1t 1s assessed. Thus, 1t 1s not useful to summa-
rize human performance through blanket statements about
the degree of constancy obtained. Rather, questions about
constancy must be framed 1n conjunction with a specifica-
tion of the scene ensemble. Natural questions are (1) what
ensembles of scenes support good constancy? and (2) how
does constancy vary within some ensemble of scenes which
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IFigure 61.6.  Achromatic data when both illummant and scene
surfaces are varied. The 1mages at the top of the figure show the
observer’s view of two scenes, labeled 1 and 1. The relation between
these scenes 1s described 1n the text. 'The test patch 1s visible 1n each
image. The projection colorimeter was turned oft at the time the
images were acquired, so the mmages do not show the results of

1s Intrinsically of interest? An example of the latter would
be scenes that occur n natural viewing:

T'he choice of experimental scenes 1s a crucial aspect of
the design of any constancy experiment. Without some a
priori restricion the number ol possible scenes 1s astro-
nomical, and systematic exploration of the eflect of all pos-
sible stimulus variables 1s not feasible. In choosing an
ensemble of scenes for study, different experimenters have
been guided by different intuitions. Indeed, 1t 1s this choice
that most differentiates various studies. A common rationale,
however, 1s to test specific hypotheses about how constancy
might operate. 1he goal 1s to develop principles that allow
generalization beyond the scenes studied experimentally.

'IT'wo broad approaches have been pursued. The mechanis-
tic approach 1s based on the hope that constancy 1s mediated
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observers’ achromatic adjustments. The chromaticity diagram
shows the data from achromatic adjustments of the test patch made
in the context of the two scenes. The format 1s the same as that of
Figure 61.4. The equivalent surface reflectance S(A) computed from

the data obtained in Scene 1 1s shown in Figure 61.4. (See color
plate 39.)

by simple visual mechanisms and that these mechanisms can
be studied through experiments with simple stimuli (e.g.,
uniform test patches presented on uniform background
fields). 'The computational approach 1s to develop image pro-
cessing algorithms that can achieve color constancy and to
use msight gained from the algorithms to build models of
human performance. This approach 1s often characterized
by the use of stimuli closer to those encountered in natural
viewing, as the algorithms are generally designed to take
advantage of the statistical structure of natural images. The
difference between the mechanistic and computational
approaches 1s not always clear-cut: a mechanistic theory that
explains human constancy can always be recast as a com-
putational algorithm, while the action of a given algorithm
can probably be approximated by the action of a series of



plausible neural mechanisms (see, e.g., Marr, 1982, chapter
1). Examples of both approaches are outlined below.

T MEecHaNisTIC APPROACH Constancy i1s essentially a
relative phenomenon; 1t can be assessed only by measuring
appearance across two (or more) scenes. We cannot say from
the data above_that constancy i1s good for Scenes 1 and 2 but
bad for Scene 1. Rather, constancy is good across the change
from Scene 1 to Scene 2 but bad across the change from
Scene 1 to Scene 1. Presumably it is possible to construct
some other Scene 3 such that good constancy 1s revealed
across Scenes 1 and 3.

What 1s it about the relation between Scenes | and 2 that
supports the good constancy observed? A critical feature 1s
that all that differs between them i1s the spectrum of the
ambient illuminant. This design 1s common to most studies
of constancy—stability of appearance 1s assessed under con-
ditions where the surfaces comprising the scene are held fixed
while the illuminant 1s varied (e.g., Arend and Reeves, 1986;
Brainard and Wandell, 1992; Breneman, 1987; Burnham et
al., 1957; Helson and Jeffers, 1940; McCann et al., 1976). It
1s probably the ubiquity of this surfaces-held-fixed design
that leads to the oft-quoted generalization that human vision
1s approximately color constant (e.g., Boring, 1942).

When the surfaces in the image are held constant, 1t 1s
easy to postulate mechanisms that could, qualitatively at
least, support the high levels of observed constancy.

The mitial encoding of the color signal by the visual
system 1s the absorption of light quanta by photopigment in
three classes of cone photoreceptors, the L, M, and S cones
(for a fuller treatment see, e.g., Brainard, 1995; Kaiser and
Boynton, 1996; Rodieck, 1998). The three classes are dis-
tinguished by how their photopigments absorb light as a
function of wavelength. The fact that color vision 1s based
on absorptions in three classes of cones 1s the biological sub-
strate for trichromacy.

An alternative to using tristimulus or chromaticity coor-
dinates to represent spectral properties of the light reaching
the eye 1s to use cone excitation coordinates. These are pro-
portional to the quantal absorption rates for the three classes
of cones elicited by the light. The cone excitation coordi-
nates for a light, r, may be specified by using a three-dimen-
sional column vector

r=|7Ty (4)

It 1s well accepted that the signals mitiated by quantal
absorption are regulated by adaptation. A first-order model
of adaptation postulates that (1) the adapted signals are
determined from quantal absorption rates through multi-
plicative gain control; (2) at each retinal location the gains

are set independently within each cone class, so that (e.g,)
signals from M and S cones do not influence the gain of L
cones; and (3) for each cone class, the gains are set in inverse
proportion to a spatial average of the quantal absorption
rates seen by cones of the same class. This model 1s gener-
ally attributed to von Kries (1905/1970). The three postu-
lates together are sometimes referred to as von Rries adaptation.
Von Kries recognized that models where some of the pos-
tulates hold and others do not could also be considered.

The first postulate of von Kries adaptation asserts that for
each cone class, there 1s an adapted cone signal (a; for the L
cones, ay for the M cones, and ag for the S cones) that is
obtained from the corresponding cone excitation coordinate
through multiplication by a gain (e.g., a; = g;7;). This may be
expressed using the vector notation introduced in Eq. (4). Let
the vector a represent the magnitude of the adapted cone
signals. Then

Ay g 0 0 Tt
"y | =Dr (5)
0 s 7s _

a=|ay|=|0 gy O
as 0

o b

Because the adapted cone signals a are obtained from the
cone excitation coordinates r through multiplication by the
diagonal matrix D, this postulate 1s called the diagonal model
Sfor adaptation. Tt should be emphasized that for the diagonal
model to have predictive power, all of the effect of context
on color processing should be captured by Eq. (5). In this
model, two test patches that have the same adapted cone
signals should have the same appearance.

In general, it 1s conceptually useful to separate two com-
ponents of a model of adaptation (Brainard and Wandell,
1992; Krantz, 1968). The first component specifies what
parameters of a visual processing model are allowed to vary
with adaptation. The diagonal model provides this compo-
nent of the full von Kries model. In the diagonal model,
the only parameters that can vary are the three gains.

The second component of a full model specifies how the
processing parameters are determined by the image. The
diagonal model is silent about this, but the issue 1s addressed
by the second two assumptions of the full von Kries model.
Only cone excitation coordinates within a cone class influ-
ence the gain for that cone class, and the specific form of the
influence 1s that the gain at a location 1s set inversely pro-
portional to the mean excitation in a neighborhood of the
location.

If the visual system implements von Kries adaptation, the
adapted cone signals coding the light reflected from a surface
are considerably stabilized across illuminant variation, pro-
vided that the other surfaces in the scene also remain fixed
(Brainard and Wandell, 1986; Foster and Nascimento, 1994;
Lennie and D’Zmura, 1988; see also Finlayson et al., 1994).
Indeed, von Kries adaptation 1s the active ingredient
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in later versions of Land’s popular 7efinex account of succes-
sive color constancy. In the descriptions of the retinex algo-
rithm, the adapted cone signals are called lightness designators,
and these are derived from cone excitations through elabo-
rate calculation. Nonetheless, for successive constancy the
calculation reduces to a close approximation to classic von
Kries adaptation (Land, 1986; see Brainard and Wandell,
1986; for early descriptions of Land’s work see Land, 1959a,
1959b; Land and McCann, 1971).

Qualitatively, then, von Kries adaptation can explain the
good constancy shown 1n experiments where the illuminant
1s changed and the surfaces in the scene are held fixed. Such
adaptation also provides a qualitative account for the poor
constancy shown by the data in Figure 61.6, where both the
illuminant and surfaces in the scene were changed to hold
the 1mage approximately constant. On the basis of the data
presented so far, one might sensibly entertain the notion that
human color constancy 1s a consequence of early adaptive
gain control.

Each of the postulates of von Kries adaptation have been
subjected to sharply focused empirical test, and it is clear
that each fails when examined closely. With respect to the
diagonal model, a number of experimental results suggest
that there must be additional adaptation that is not described
by Eq. (3). These effects include gain control at neural sites
located after signals from different cone classes combine and
signal regulation characterized by a subtractive process
rather than multiplicative gain control (e.g., Hurvich and
Jameson, 1958; Jameson and Hurvich, 1964; Poirson and
Wandell, 1993; Shevell, 1978; Walraven, 1976; see also
Eskew et al., 1999; Webster, 1996).

The diagonal model fails when probed with stimuli care-
fully crafted to test its assumptions. Does it also fail for
natural scenes? The illuminant spectral power distributions
E(A) and surface spectral reflectance functions S(A) found in
natural scenes are not arbitrary. Rather, these functions tend
to vary smoothly as a function of wavelength. This con-
straint restricts the range of color signals likely to occur in
natural scenes. Conditions that elicit performance in con-
tradiction to the diagonal model may not occur for natural
scenes. If so, the diagonal model would remain a good
choice for studies of how adaptive parameters vary within

this restricted domain.

The regularity of illuminant and surface spectral func-
tions may be captured with the use of small-dimensional
linear models (e.g,, Cohen, 1964; Jaaskelainen et al., 1990;
Judd et al., 1964; Maloney, 1986). The idea of a linear model
is simple. The model is defined by N basis functions. 'These
are fixed functions of wavelength, E\(A), ..., ExA). Any
spectrum F(A) is approximated within the linear model by a
weighted sum of the basis functions

E(?b) — E,E)[E], (}u) + ...+ &y Eg{ (?L) (6)
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FiGure 61.7. Linear model for natural daylights. 7op: Three
basis functions for the CIE linear model for daylights (CIE, 1986).
Bottom: Linear model approximation to measured daylight. Solid
line, measurement. Dotted line, reconstruction. The measured

dayhght was obtained from a database of measurements made
available by J. Parkkinen and P. Silfsten on the World Wide Web

at  http://csjoensuu.fi/ ~spectral/databases/download/daylight.
htm.

where the weights are chosen to minimize the approxima-
tion error. Figure 61.7 plots the basis functions of a three-
dimensional lmear model for natural daylight and shows
the linear model approximation to a measured daylight. The
same approach can be used to express constraints on surface
reflectance functions. The use of linear models has been
central to computational work on color constancy (Brainard
and Freeman, 1997; Brainard et al., in press; Maloney,
1999).

Mondrian World scenes where the illuminants and surface
spectra are restricted to be typical of naturally occurring
spectra can be referred to as Restricted Mondrian World scenes.
When the experimental scenes are from the Restricted
Mondrian World, the diagonal model seems to provide a
good description of performance.

Brainard and Wandell (1992) tested the diagonal model
using asymmetric matching. In asymmetric matching, the obser-
ver adjusts a matching patch, embedded in one scene, so that
its appearance matches that of a test patch presented n
another. In the context of the diagonal model, the match 1s
taken to indicate two lights that elicit 1dentical adapted cone
signals. Let a’ and a™ represent the adapted cone signals for
the test and matching patches. Equation (5) then yields

af — D:‘ri —q™ = Dmrm — " = [Dm]_l[Dl ]r! — D!—}rﬁ'rf (7)

where the diagonal matrix D" is



i}
L0 0
gy
D [—>rit — U g :: 0
g (8)
0 0 8s
i g5 _

If the diagonal model 1s correct, the cone excitation coordi-
nates of the test and match patches are related by a diago-
nal matrix whose entries are the ratios of cone gains. A single
asymmetric match determines the entries ol the matrix
D", Since Eq. (7) must hold with the same matrix D" for
any choice of test patch cone coordinates, repeating the

experiment with different test patches allows evaluation of

the diagonal model.

In a successive matching experiment that employed
simple synthetic scenes, Brainard and Wandell (1992) found
that a large set of asymmetric matching data was i good

agreement with the diagonal model. Similar results were
obtained by Bauml (1995) also for successive matching and
by Brainard et al. (1997) for simultaneous matching. To
develop a theory of color constancy that applies to natural
viewing, violations of the diagonal model may be small
enough to neglect.

What about the other postulates of von Kries adaptation,
which concern how the gains are set by image context? The
notion that the gains are sct as a function of a spatial average
of the image has been tested in a number of ways. One
approach 1s to examine the equivalent background hypothesis. In
its general form, this hypothesis asserts that the eftect of any
image on the color appearance of a test light 1s the same as
that of some uniform background. If the gains are set by a
spatial average of the image, then the equivalent back-
ground hypothesis must also hold.

Precise tests of the equivalent background hypothesis
where spatial variation of color 1s introduced into a uniform
background, indicate that 1t fails (Brown and MacLeod,
1997; Shevell and Wei, 1998). The general logic is first to find
a uniform field and a spatially variegated field that have an
identical eflect on the appearance of a single test hght and
then show that for some other test light these two contexts
have different effects (Stiles and Crawtord, 1932). Like the
sharpest tests of the diagonal model, however, these studies
did not employ stimuli from the Restricted Mondrian World.

Kraft and Brainard (1999) examined whether the spatal
mean of an image controls the state of adaptation by con-
structing two 1lluminated scenes that had the same spatal
mean. lo equate the mean, both the illuminant and the
scene surfaces were varied between the scenes. Kraft and
Brainard then measured the achromatic loct in the two
scenes. It the spatial mean were the only factor controlling
adaptation, then the achromatic pomnt in the two scenes

should have been the same. A more general constancy
mechanism, however, might be able to detect the change in
the 1lluminant based on some other aspect of the images.
The achromatic points were distinct, with a mean constancy
index of 0.39. Even for nearly natural scenes, control of the
oains 1s not a simple function of the spatial mean of the
image: the visual system has access to additional cues to
the illuminant. Kraft and Brainard examined other simple
hypotheses about control of adaptation in nearly natural
scenes and found that none accounted for the data.

A key feature in Kraft and Brainard’s (1999) design (see
also Gilchrist and Jacobson, 1984; Kraft et al., 2002;
McCann, 1994) 1s that both the 1lluminant and the surfaces
in the scene were varied. When only the 1lluminant 1s varied,
the data are roughly consistent with adaptation to the spatial
mean of the image. Such data do not provide a sharp test,
however, since essentially all plausible hypotheses predict
ogood constancy when the surfaces 1 the image are held fixed
across an illuminant change. Only by varying the surfaces
and 1illuminants to differentiate predictions can strong tests
be made. This point also applies to studies of the necural
locus of constancy.

The current state of affairs for the mechanistic approach
may be summarized roughly as follows. A gain control model
provides a reasonable approximation to performance mea-
sured 1n scenes consisting of illuminated surfaces, but lacking
1s a theory that links the gains to the image. '1'he agenda 1s
to understand what image factors control the state of adap-
tation. In the lightness literature, this 1s sometimes referred
to as the anchoring problem (e.g., Gilchrist et al., 1999). Within
the mechanistic approach, one recent theme 1s to study the
influence of 1mage contrast (Brown and MacLeod, 1997;
Golz and MacLeod, 2002; Krauskopf ct al., 1982; Shevell
and Wei, 1998; Singer and D’Zmura, 1995; Webster and
Mollon, 1991) and spatial frequency content (Bauml
and Wandell, 1996; Poirson and Wandell, 1993). Another
approach (Bauml, 19935; Bramnard and Wandell, 1992;
Chichilnisky and Wandell, 1995) is to study rules of combi-
nation (e.g., linearity) that allow prediction of parameter
values for many images on the basis of measurements made
for just a few.

ArpProacH The
approach is motivated by consideration of the physiology

Tag  COMPUTATIONAL mechanistic

and anatomy of the visual pathways. The computational
approach begins with consideration about how one could, in

principle, process the retinal image to produce a stable rep-
resentation of surface color. The computational approach
focuses on the information contained in the image rather
than on the specific operation of mechanisms that extract
the information.

Computational algorithms often operate in two distinct
steps (Maloney, 1999). The first step estimates the illuminant
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at each 1mage location, while the second step uses the esti-
mate to transform the cone coordinates at each location to
an 1lluminant-invariant representation. Given linear model
constraints on natural surface reflectance functions, the
second step 1s quite straightforward (Buchsbaum, 1980) and
1s well approximated by diagonal gain control (Brainard and
Wandell, 1986; Foster and Nascimento, 1994). The deep
1ssue 1s what aspects of the image carry useful information
about the illuminant. This 1ssue 1s completely analogous to
the central 1ssue within the mechanistic approach, namely,
what aspects of the image control adaptation. Indeed, the
idea linking the computational algorithms to measured
human performance 1s that measured adaptation might be
governed by the same 1image statistics that provide informa-
tion about the 1lluminant (Brainard et al., in press; Maloney,
1999).

Many algorithms have been proposed for estimating the
lluminant from the image (Brainard and Freeman, 1997;
Buchsbaum, 1980; D’Zmura and Iverson, 1993; D’Zmura
et al., 1995; Finlayson et al., 1997; Forsyth, 1990; Funt and
Drew, 1988; Lee, 1986; Maloney and Wandell, 1986). A
detailed review of the individual algorithms is beyond the
scope of this chapter, but excellent reviews are available
(Hurlbert, 1998; Maloney, 1999). Common across algo-
rithms 1s the general approach of specifying assumptions
that restrict the class of scenes and then showing how it 1s
possible to estimate the illuminant within the restricted class.
With reference to Figure 61.5, each algorithm 1s based on
a rule for choosing one particular scene from within each
shaded ellipse.

In practice, different proposed algorithms depend on dii-
ferent image statistics. For example, in Buchsbaum’s (1980)
classic algorithm, the i1lluminant estimate was based on the
spatial mean of the cone quantal absorption rates. As a
model for human performance, this algorithm may be tested
by asking whether adaptation 1s governed only by the spatial
mean. As described above, experiments show that this 1s
not the case. l1he detailed logic connecting this algorithm
to human performance 1s described in a recent review
(Braimnard et al., in press).

Other computational algorithms depend on different
aspects of the mmage. For example, Lee (1986; see also
D’Zmura and Lennie, 1986) showed that specular highlights
In an 1mage carry information about the illuminant. This
has led to tests of whether human vision takes advantage of
the mnformation contained 1 specular highlights (Hurlbert
et al., 1989; Yang and Maloney, 2001).

In Yang and Maloney’s (2001) work, the stimuli con-
sisted of realistic computer graphics renderings of synthetic
scenes. l'hat 1s, the locations, spectral properties, and geo-
metric properties of the scene illuminants and surfaces were
specified in software, and a physics-based rendering algo-
rithm was used to generate the stimuli. In real scenes, the
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information provided by separate cues tends to covary, which
makes 1t difficult to separate their eftects. By using synthetic
imagery, Yang and Maloney teased apart the effects of
independent cues. They were able to show that specular
highlights can influence human judgments of surface color
appearance and to begin to delineate the circumstances
under which this happens. Delahunt (2001) employed similar
techniques to study the role of prior information about
natural daylights in successive color constancy. (For compu-
tational analysis of the use of such prior information, see
Brainard and Freeman, 1997; D’Zmura et al.,, 1995).
The methodology promises to allow systematic study of a
variety of hypotheses extracted from the computational
[iterature.

(GENERALIZING TO SIMULTANEOUS CONSTANCY
has focused on successive color constancy, and in particular

This chapter

on the case where the illuminant 1s approximately uniform
across the scene. As illustrated by Figure 61.2, this idealized
situation does not hold for natural scenes.

When an image arises from a scene with multiple illumi-
nants, one can still consider the problem of successive color
constancy. That 1s, one can ask what happens to the color
appearance of an object in the scene when the spectral prop-
erties of the illuminant are changed without a change in
scene geometry. Little, if any, experimental effort has been
devoted to this question.

The case of spatially rich illumination also raises the ques-
tion of simultaneous constancy—how similar does the same
object appear when located at different places within the
scene?

One thread of the literature has emphasized the role of
scene geometry (Bloj and Hurlbert, 2002; Bloj et al., 1999;
Epstein, 1961; Flock and Freedberg, 1970; Gilchrist, 1977,
1980; Hochberg and Beck, 1954; Knill and Kersten, 1991;

Pessoa et al., 1996). Under some conditions, the perceived

orientation of a surface in a scene can influence its appar-
ent lightness and color in a manner that promotes constancy.
The range of conditions under which this happens, however,
1s not currently well understood.

An Interesting aspect of simultaneous constancy 1s that the
observer’s performance can depend heavily on experimen-
tal mnstructions. In a study of simultaneous color constancy,
Arend and Reeves (1986) had observers adjust the color of
one region of a stimulus display until it appeared the same
as another. They found that observers’ matches varied with
whether they were asked to judge the color ot the reflected
light or the color of the underlying surface. More constancy
was shown when observers were asked to judge the surface
(see also Bauml, 1999; Bloj and Hurlbert, 2002). In a study
of successive constancy, on the other hand, Delahunt (2001)
found only a small instructional effect. It 1s not yet clear what
conditions support the mstructional dichotomy, or whether



the dichotomy indicates dual perceptual representations or
observers” ability to reason from appearance to identity.

Recent theories of lightness perception have emphasized
simultaneous constancy (Adelson, 1999; Gilchrist et al.,
1999). At the core of these theories 1s that 1dea that percep-
tion of lightness (and presumably color) proceeds i two
basic stages. Iirst, the visual system segments the scene into
separate regions. Second, image data within regions are used
to set the state of adaptation for that region. (At a more
detailed level, the theores also allow for some interaction
between the states of adaptation i different regions.) The
two-stage conception provides one way that results for suc-
cessive constancy might generalize to handle simultaneous
constancy: models that explain successive constancy for
untformly illuminated scenes might also describe the
processes that set the state of adaptation within separately
segmented regions within a single image (Adelson, 1999). To
the extent that this hypothesis holds, it suggests that work on
simultaneous constancy should focus on the segmentation
process. At the same time, it must be recognized that the
segment-estimate hypothesis 1s not the only computational
alternative (see, e¢.g., Adelson and Pentland, 1996; Funt and
Drew, 1988; Land and McCann, 1971; Zaidi, 1998) and that
empirical tests of the general 1dea should also be given high
Priority.
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PLATE 37 Image formation. Each set of square patches
around the side of the 1image 1illustrates variation in the light
reflected to the eye when surface reflectance is held fixed.
Gradient: The two patches shown were extracted from the
upper left (L) and lower right (R; above table) of the back
wall of the scene. Shadow. The two patches were extracted
from the tabletop in direct illumimnatnon (D) and shadow
(S). Shape. The three patches shown were extracted from
two regions of the sphere (T and B; center top and right
bottom, respectively) and from the colored panel directly
above the sphere (P; the panel 1s the leftmost of the four in
the bottom row). Both the sphere and the panel have the
same simulated surtace retlectance function. Pose and indirect
illum. The tour patches were extracted from the three visible
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PLATE 36 Same objects
imaged under two natural
illuminants. 7op: The
patches show a rectangular
region extracted from
images of the same object
under different outdoor
illuminants. Bottom: The
images from which the
patches were taken. Images
were acquired by the
author in Merion Station,
Pennsylvania, wusing a
Nikon CoolPix 995 digital
camera. The automatic
white balancing calcula-
tion that is a normal part
of the camera’s operation
was disabled during image
acquisition. (See Fig. 61.1.)

sides of the cube (R, L, and T; right, left, and top visible
sides, respectively) and from the left side of the folded paper
located between the cube and the sphere (I). The simulated
surface reflectances of all sides ot the cube and of the left
side of the folded paper are identical. The 1image was ren-
dered from a synthetic scene description using the RADI-
ANCE computer graphics package (Larson and
Shakespeare, 1998). There were two sources of illumination
in the simulated scene: a diffuse illumination that would
appear bluish if viewed in 1solation and a directional illumi-
natuon (from the upper left) that would appear vellowish 1if
viewed in isolation. All of the effects illustrated by this ren-
dering are easily observed in natural scenes. (See Fig. 61.2.)
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PLATE 38 Basic data from an achromatic adjustment experi-
ment. The images at the top of the figure show the
observer’s view of two scenes, labeled 1 and 2. The test patch
is visible 1n each image. The projection colorimeter was
turned off at the time the 1mages were acquired, so the
1mages do not show the results of observers’ achromatc
adjustments. The chromaticity diagram shows the data from
achromatic adjustments of the test patch made in the con-
text of the two scenes. The open circles show the chromatici-
ty of the illuminant for each scene. The illuminant for Scene
1 plots to the lower left of the illuminant for Scene 2. The
closed circles show the chromaticity of the mean achromatic
adjustments of four observers. Where visible, the error bars
indicate =1 standard error. The surface reflectance function
plotted in the inset at the right of the figure shows the equiv-
alent surface reflectance §(A)computed from the data
obtained in Scene 1. The closed diamond shows the color
constant prediction for the achromatic adjustment in Scene
2, given the data obtained for Scene 1. See the explanation

in the text. (See Fig. 61.4.)
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PLATE 39 Achromatic data when both illuminant and scene
surfaces are varied. The images at the top of the figure show
the observer’s view of two scenes, labeled 1 and 1. The rela-
tion between these scenes 1s described 1n the text. The test
patch 1s visible in each 1mage. The projection colorimeter
was turned off at the time the images were acquired, so the
images do not show the results of observers’ achromatic
adjustments. The chromaticity diagram shows the data from
achromatic adjustments of the test patch made 1n the con-
text of the two scenes. The format is the same as that of
Figure 61.4. The equivalent surface reflectance S{A) comput-

ed from the data obtained in Scene 1 1s shown in Figure
61.4. (See Fig. 61.6.)



